content tagged as Food Microbiology

1 - 10 Results out of 13

Biosensors are emerging as a potentially revolutionary technology in the study and rapid detection of foodborne pathogens, toxins, allergens, contaminants, and indicators of food quality.

Low-moisture foods, such as flour and peanut butter, have made national headlines in the past few years due to foodborne illness outbreaks associated with pathogens in these products.
Novel Application of Nanotechnology for Control of Pathogenic Viruses and Bacteria: An Innovative Approach to Food Safety

When: Monday, 07/16/2018 through Monday, 07/16/2018, 03:30 PM - 05:00 PM

Where: McCormick Place - S401D

Nanotechnology has the potential to revolutionize global agricultural and food systems in numerous ways, and can provide promising insights into potential applications for pathogenic control in food as well as disease treatment in food-producing animals and agricultural plants.

The prevalence of diverse, potentially harmful contaminants in food requires our continual attention. Foodborne diseases are caused by ingesting bacteria, fungi, parasites, or viruses through contaminated food or water, or via person-to-person contact. The Center for Disease Control and Prevention (CDC) estimates that foodborne diseases cause approximately 76 million illnesses, 325,000 hospitalizations, and 5,000 deaths in the United States each year. The economic impact of five major foodborne bacterial pathogens was estimated to be $6.9 billion in 2000. Due to ever increasing trends in food safety, food manufacturers should take sanitary/ hygienic processes into key consideration. Minimizing the attachment of spoilage and pathogenic organisms to the surface of food processing equipment is one of the major challenges in the fields of food science and biosafety.

The effectiveness of antibiotics has been challenged by the occurrence of dangerous infections that antibiotics can no longer treat, as pathogens are developing resistance to the drugs. There is thus a compelling need to develop mitigation strategies based on the nanotechnology for antimicrobial resistant microorganism in food animals. Modern day agriculture requires extensive application of pesticides and agricultural biocides for preventing and treating microbial origin diseases, vector-borne diseases and other seasonal diseases. Specifically, yield loss in food crop production would have a significant effect on both food availability and food prices thereby directly affecting the global hunger levels. However, wide use of these biocides in the past few decades has resulted in accumulation of copper residues at alarming levels in the soil and in surrounding ecosystem. Strong motivation exists on improving efficacy of current Cu bactericide/fungicide through nanoscale engineering.

The proposed session will help build a diverse community committed to advancing work in the area of nanotechnology for agriculture and food systems, leading to novel ideas and approaches to create a sustainable and safe future. In appreciation of the above multidisciplinary nature, a diverse range of invited speakers will present a comprehensive vision of critical and emerging nanotechnology research advances across the field of agricultural sciences including animals, crops, and food processing, including: (1) development of nanotechnology based self-sanitizing surfaces for the control of human norovirus; (2) nano-engineered surfaces for prevention of microbes and biofilm; (3) copper and zinc based nanoformulations for controlling citrus canker and bacterial spot of tomatoes; and (4) engineering and in vivo evaluation of chitosan-based nanoparticles as alternative antimicrobial agents in food producing animals.
Next Generation Sequencing Metagenomics Approaches to Probe the Microbiome Throughout the Beef Chain: From Fundamentals to Applications

When: Tuesday, 07/17/2018 through Tuesday, 07/17/2018, 12:30 PM - 02:00 PM

Where: McCormick Place - S404D

This session will explore novel findings and methods used to study the microbial ecology of meat production, specifically, the microbiome during multiple segments of meat production. This includes considerations of pathogenic bacteria, microbial resistance, and spoilage bacteria. Studies of the microbiome are possible due to recent collections of large amounts of microbial sequencing data. This sequencing data may be used for bioinformatic tools to analyze and interpret data to identify and quantify bacterial species. There are, however, several considerations related with sampling and interpretation of this data. In addition to sharing recent results in this area. Speakers will provide background about this emerging approach and the important parameters that must be considered around producing and interpreting microbial ecological data.
Improving Microbial Safety of Fresh Produce: Pilot Plant and Commercial Scaled Studies and Related Agricultural Economic Analysis

When: Wednesday, 07/18/2018 through Wednesday, 07/18/2018, 10:30 AM - 12:00 PM

Where: McCormick Place - N426C

Fresh and fresh-cut produce has been linked to outbreaks resulting from bacterial, viral, and protozoan pathogens infection in the last 20 years. Since 2011, the Food Safety Modernization Act (FSMA) authorized the U.S. Food and Drug Administration (FDA) to issue regulations for fresh produce processors that would require establishment of preventive controls for potential food safety hazards in their products. In addition, United Fresh Produce Association just published a guideline for fresh-cut produce processors to involve three options to prevent cross-contamination during produce washing process including: (1) apply a pathogen surrogate for the microbial hazard and verify that cross-contamination is prevented by the antimicrobial wash; (2) use of antimicrobial sensors and the demonstration that a critical antimicrobial level is maintained during worst-case scenario; and (3) validate the placement of the sensors in the processing equipment. The dynamics of processing conditions applied by various produce growers are more complex than laboratory conditions. Meanwhile, the new FSMA gives small farms and direct-market farms who sell produce locally the option of complying with state regulations; provide the US-FDA with the authority to exempt farms engaged in low or minimal risk processing from new regulatory requirements; reduce unnecessary paperwork and excess regulations required under the preventative control plan; and exempt farmers from extensive traceability and recordkeeping requirements. Therefore, it is crucial to ensure that both industry scale and locally grown fresh produce producers/growers are equipped with scientific pilot plant validated information, which are closer to real-life scenarios. Besides, the most recent USDA-NIFA RFA specifically identifies the development of economic incentives that lead to improved food safety including fresh produce safety as one of its key priorities. The agricultural economic cost-effectiveness analysis will provide direct and early identification of major economic factors that impact the adoption of the pathogen control strategies during fresh produce processing. This session will begin with an overview of key factors affecting bacteria survival and transfer during tomato and leafy green post-harvest washing processing in pilot plants. Following that, an industry scale in-plant validation study of antimicrobial application in various fresh produce processes and the application of pathogen surrogate will be discussed. In addition, a “three-step” washing process to control foodborne pathogens on fresh produce and storage bins in West Virginia local community will be presented. Finally, an analysis of economic feasibility of control strategies to improve microbial safety for fresh produce will conclude the session. The invited speakers include a food technologist, food microbiologist, food industry consultant, and agricultural economist, and represent expertise from the food industry, government research institutions, and academia.
Probiotics: Trends, Opportunities, and the Latest Quality-Management Technology

When: Monday, 07/16/2018 through Monday, 07/16/2018, 10:30 AM - 12:00 PM

Where: McCormick Place - N426C

The 2016 global retail value of the probiotic market was estimated to be $39.9 billion; $4.3 billion was attributed to dietary supplements. With 38% growth expected between 2016 and 2021, this sector can drive incremental sales of many different food products formulated to contain probiotics. Hence, food product developers are increasingly paying attention. The most critical information for producers, formulators, and consumers is the number and identity of the organisms present, with the physiological state of those organisms recently starting to become of interest. Traditional enumeration adds many days and associated inventory costs to the probiotic product supply chain. Flow cytometry has recently migrated from the clinical laboratory into the probiotic space, where it is increasingly being used to address manufacturers’, formulators’, and consumers’ needs for rapid and accurate enumeration of probiotic organisms.

This symposium will explore trends in the rapidly growing probiotics marketplace and the impact of those trends on the food industry generally, along with the industry’s perception of testing needed to support this rapidly growing market. The technology of flow cytometry will be explained, with examples of how it can better address the needs of these food and food-related sectors than traditional microbiological methods. Finally, a case study on instrument and matrix validations will introduce the use of flow cytometry for enumeration of probiotics products and describe some of the technical challenges overcome in applying this technology to foods. The audience will leave with a clearer picture of opportunities for probiotic product development and a clearer picture of the latest technology available for managing probiotic quality.
Shedding Light on Food Safety, Quality, and Nutrition: Opportunities and Challenges With Light-Based Technologies

When: Wednesday, 07/18/2018 through Wednesday, 07/18/2018, 08:30 AM - 10:00 AM

Where: McCormick Place - N426C

The CDC estimates that every year, there are 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths in the United States due to consumption of foods contaminated with pathogens. Therefore, it is necessary to process foods to effectively inactivate these microorganisms to render food safe. Various preservation technologies have been developed and adopted successfully to eliminate or reduce microbial contamination of the food. However, conventional treatments are very highly energy intensive with high capital and operational costs. Most often these processes also result in deterioration of food quality. Therefore, there is a need for alternative processing methods that are simple, cost-effective, have high inactivation efficiencies and yield minimal quality changes. Emerging technologies such as UV light, pulsed light and LED light processing show great promise since they can inactivate the pathogenic microorganisms while preserving the quality of foods.

This session will focus on recent advances in the light-based technologies for microbial decontamination. There has been an increased interest in the applications of light-based technologies such as UV light, pulsed light and LED light for inactivating microorganisms. Typically, these technologies operate in the UV, visible and near-infrared light range. Studies have shown that these technologies can effectively inactivate myriad microorganisms. However, there are several challenges associated with these technologies. The identified speakers are experts in the light-based technologies. They will shed light on the applications and challenges of these technologies. Due to the increased interest in these technologies, a symposium on this topic is highly warranted.

This session is sponsored by Phi Tau Sigma, the honor society of food science and technology.
Whole Genome Sequencing

When: Monday, 07/16/2018 through Monday, 07/16/2018, 07:45 AM - 08:45 AM

Where: McCormick Place - S404D

Whole genome sequencing (WGS) is an emerging technology that allows scientists to map the genetic sequence of pathogens and other organisms with such precision that they can distinguish between different strains of a bacterium and even slight variations by geography within the same strain. WGS has proven to be a powerful tool for food manufacturers and regulatory agencies. The technology can be used to determine which illnesses are part of an outbreak and which are not; to determine which ingredient in a multi-ingredient food is responsible for an outbreak; to identify geographic regions from which a contaminated ingredient may have originated; to link illnesses to a processing facility; to link small numbers of illnesses that otherwise might not have been identified as common outbreak; and to identify unlikely routes of contamination. While rapid analysis of WGS data still remains somewhat of a challenge, and may in some situations represent a bottleneck, easy-to-use, high-throughput bioinformatics tools for bacterial WGS data have been developed and are rapidly being improved. The cost of gene sequencing equipment is also continuously declining. With its advantages and decreasing costs, WGS has been integrated into routine foodborne disease surveillance and may replace other technologies such as pulsed-field gel electrophoresis (PFGE) in the near future

This symposium was organized by the IFT Quality Assurance Division in collaboration with the IFT Food Microbiology Division.
New Advancements in Botulinum Neurotoxin Detection Methods: From the Mouse Bioassay to Mass Spectrometry

When: Wednesday, 07/18/2018 through Wednesday, 07/18/2018, 01:15 PM - 02:45 PM

Where: McCormick Place - S404D

Clostridium botulinum neurotoxins continue to be a threat to the global food supply through natural and possibly intentional routes of contamination. Rapid, sensitive, and specific detection of the most potent neurotoxin known, botulinum neurotoxins (BoNTs), is of vital concern to prevent cases of the neuroparalytic disease (botulism). The mouse bioassay is considered the gold standard assay because it a positive result in the test requires all four steps of intoxication, internalization by the host through the small intestine, trafficking of the toxin to the target cell via the blood and lymphatic system, translocation into the target neuronal cell and finally, catalytic activity of the toxin's light chain on SNARE proteins to prevent the release of the neurotransmitter, acetylcholine at the neuromuscular junction. Disadvantages to the mouse bioassay include the ethical concerns of using laboratory animals, the expensive cost, and the time to receive a positive result, which can take up to 4 days for a positive. Functional based assays (e. g. endopeptidase mass spectrometry, cell based and Förster resonance energy transfer) are specific and rely on the biological activity of the botulinum neurotoxin. Immunological and other in vitro assays, such as enzyme linked immunosorbent assays (e. g. DIG-ELISA) cannot discern between active and inactive toxins. This symposium will discuss the current assays used to detect botulinum neurotoxins in food and clinical samples, address their advantages and disadvantages, and highlight the most rapid, sensitive, and specific assays that are being widely adopted to replace existing toxin detection and/or screening methods.
Whole Genome Sequencing: Overview and Role in Food Safety Systems

When: Wednesday, 07/18/2018 through Wednesday, 07/18/2018, 08:30 AM - 10:00 AM

Where: McCormick Place - S404D

In recent years, whole genome sequencing has emerged as a powerful food safety tool. The unprecedented resolution of whole genome sequencing allows for highly improved characterization and subtyping of microorganisms over methods such as pulsed field gel electrophoresis. This in turn has helped to improve epidemiological investigations of foodborne illnesses by more quickly and accurately linking clinical isolate whole genome sequence subtypes with those of food and environmental isolates. By providing this faster and more accurate link, foodborne illness outbreaks can be resolved in much more timely manner, which therefore helps reduce the number of foodborne illness cases. Consequently, whole genome sequencing has been adopted as a key tool in the repertoire of regulatory and public health agencies such as the FDA, USDA, and CDC for resolution of foodborne illness outbreak investigations and other applications such as monitoring of antimicrobial resistance.

Yet, although these agencies have begun to use whole genome sequencing in these ways, there is still a need for policy development surrounding the technology. As a result, the use of whole genome sequencing in the food industry has been limited. There are many different applications of the technology that would greatly improve food safety management from different areas of the food industry. For instance, whole genome sequencing can be used to identify possible harborage of a bacterium in a food processing facility. It can also be used to tie together isolates that were involved in a beef slaughter "event day." Other uses of next generation sequencing technology that are not directly applied to whole genome sequencing, such as 16S metagenomics, are also important for investigating sources of spoilage and determining the types of microorganisms present at different stages of the process. Yet, due to uncertainty around the regulatory perspective of the use of the technology, the food industry has been reluctant to widely adopt it as a tool in their food safety management systems.

This symposium will discuss an overview of the current technology that is available for performing whole genome sequencing and the current uses of whole genome sequencing by third party laboratories. This will then be followed up by presentations from the meat and produce industries where the use of whole genome sequencing by the members of these industries will be discussed, along with the concerns that still remain for these industries from a regulatory standpoint. Lastly, the session will be rounded out by a presentation on the legal and regulatory concerns on the use of whole genome sequencing, including information on the current landscape of policy development with regard to the technology.